TABLE **III**Elastic Moduli of Quartz*

	Modulus	Value (10 ¹¹ dyne/cm ²)	Reference
2nd-ord	ler		2.
	c]]**	8.757	(39)
9	c ₁₂	0.704	Ū
	c ₁₃	1.191	11
161	c ₁₄	-1.804	II
	c33	10.575	н
3rd-ord	der		
	c ₁₁₁	-21.0	(40)
	c ₁₁₂	-34.5	п
	c ₁₁₃	1.2	u
	c ₁₁₄	-16.3	ū
	c ₁₃₃	-31.2	II
	c ₃₃₃	-81.5	u .
4th-or			
	c ₁₁₁₁	1705	Present Work
	c3333	1849	, в

^{*}The second-order constants are isentropic, the third-order are mixed isothermal, isentropic constants, and the fourth-order are Hugoniot constants, (see text).

^{**}The c_{11} constant used is appropriate for open circuit compression, i.e., at constant electric displacement, D.

thus produced are negligible.

The differences between the purely isentropic third-order moduli and the mixed moduli given in Table IIIcan be calculated from Eq. (2.19)

The temperature coefficients of expansion, as given by MASON (47) are:

$$\alpha_3 = 7.8 \times 10^{-6}$$
, $\alpha_1 = \alpha_2 = 14.3 \times 10^{-6}$

and the expression, due to Westrum, reported by McSKIMIN (39) for the specific heat is:

$$C_p(T) = C_p(T_c) + (T - T_c)C_1 + (T + T_c)^2C_2 + (T - T_c)^3C_3 \alpha \dots$$

$$(77.4°K < T < 298°K)$$

where

$$T_c = 190$$
°K
 $C_p (T_c) = 5.189 \times 10^6 \text{ erg/g}$ °K
 $C_1 = 2.444 \times 10^4 \text{ erg/g}$ °K
 $C_2 = -4.126 \times 10^1 \text{ erg/g}$ °K
 $C_3 = 5.327 \times 10^{-2} \text{ erg/g}$ °K

taking

$$T = 25$$
°C, $\rho_0 = 2.6485 \text{ g/cm}^3$, $C_p = 7.42 \times 10^6 \text{ erg/g}$ °K,

and estimating $(\frac{3 \, \text{C}_{33}^8}{3 \, \text{T}})$ from McSkimin's data taken at 25°C and -195.8°C to be of the order of -1 x 10⁸ dyne/cm² °K we find the difference given by Eq. (2.19) for the c₃₃₃ constant, for example, to be of the order of 5 x 10⁸ dyne/cm².